
PHP2530: Bayesian Statistical Methods

Homework 2

Antonella Basso

March 11, 2022

Problem 1: (Ch.3.2)
Comparison of two multinomial observations: On September 25, 1988, the evening of a presidential
campaign debate, ABC News conducted a survey of registered voters in the United States; 639 persons were
polled before the debate, and 639 di�erent persons were polled after. The results are displayed in Table 3.2.
Assume the surveys are independent simple random samples from the population of registered voters. Model
the data with two di�erent multinomial distributions. For j = 1, 2, let –j be the proportion of voters who
preferred Bush, out of those who had a preference for either Bush or Dukakis at the time of survey j. Plot
a histogram of the posterior density for –2 ≠ –1. What is the posterior probability that there was a shift
toward Bush?

Table 3.2:

Survey Bush Dukakis No Opinion/Other Total
pre-debate 294 307 38 639
post-debate 289 332 19 639

Solution
Let ◊ = –2 ≠ –1, such that –1 = p11

p11+p12
and –2 = p21

p21+p22
, given that p11, p12|y ≥ Dir(295, 308) and

p21, p22|y ≥ Dir(290, 333). Simulating 1,000 values from each distribution for p1i and p2i (for i = 1, 2), we
obtain the following frequency distribution for ◊:
################################# QUESTION 1 ######################################
set.seed(47)

# Parameter Vectors

pre <- c(295, 308, 39) #j=1: pre-debate survey

post <- c(290, 333, 20) #j=2: post-debate survey

# Simulating Data

dir_1 <- rdirichlet(1000, pre) #j=1: pre-debate survey

dir_2 <- rdirichlet(1000, post) #j=2: post-debate survey

# Computing Alpha Values: �theta_b/(theta_b+theta_d))�

alpha_1 <- dir_1[, 1]/(dir_1[, 1]+dir_1[, 2])

alpha_2 <- dir_2[, 1]/(dir_2[, 1]+dir_2[, 2])

# Computing Parameter of Interest: �alpha_2-alpha_1�

alpha_diff <- alpha_2 - alpha_1

1



# Histogram of �alpha_2-alpha_1�

hist(alpha_diff, breaks=30,

main="Distribution of Theta",

xlab="Theta: alpha_2 - alpha_1")

Distribution of Theta

Theta: alpha_2 − alpha_1
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# Posterior Probability: Proportion of �alpha_2-alpha_1� > 0

sum(alpha_diff > 0)/length(alpha_diff)

The posterior probability that there was a shift toward Bush is ¥ 21.5%.

Problem 2: (Ch.3.3)
Estimation from two independent experiments: An experiment was performed on the e�ects of
magnetic fields on the flow of calcium out of chicken brains. Two groups of chickens were involved: a control
group of 32 chickens and an exposed group of 36 chickens. One measurement was taken on each chicken, and
the purpose of the experiment was to measure the average flow µc in untreated (control) chickens and the
average flow µt in treated chickens. The 32 measurements on the control group had a sample mean of 1.013
and a sample standard deviation of 0.24. The 36 measurements on the treatment group had a sample mean
of 1.173 and a sample standard deviation of 0.20.

a) Assuming the control measurements were taken at random from a normal distribution with mean µc and
variance ‡2

c , what is the posterior distribution of µc? Similarly, use the treatment group measurements
to determine the marginal posterior distribution of µt. Assume a uniform prior distribution on
(µc, µt, log‡c, log‡t).

b) What is the posterior distribution for the di�erence, µt ≠ µc? To get this, you may sample from the
independent t distributions you obtained in part (a) above. Plot a histogram of your samples and give
an approximate 95% posterior interval for µt ≠ µc.

The problem of estimating two normal means with unknown ratio of variances is called the Behrens–Fisher
problem.
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Solution
Sampling Distribution 1: Control

• yci ≥ N(µc, ‡2
c ): measurement for the ith control chicken, where i = 1, 2, ..., 32

• ȳc = 1.013: sample mean
• s2

c = 0.242: sample variance
• µc: mean (parameter of interest)
• ‡2

c : variance

Sampling Distribution 2: Treatment

• yti ≥ N(µt, ‡2
t ): measurement for the ith treatment chicken, where i = 1, 2, ..., 36

• ȳt = 1.173: sample mean
• s2

t = 0.22: sample variance
• µt: mean (parameter of interest)
• ‡2

t : variance

Parameters:

• µ = [µc, µt], known ȳ = [ȳc, ȳt] = [1.013, 1.173]
• ‡2 = [‡2

c , ‡2
t ], known s2 = [s2

c , s2
t ] = [0.242, 0.22]

a) Uninformative Uniform Priors:

µc, ‡c ≥ U [µc, log‡c] ∆ p(µc, ‡c) Ã 1 ∆ p(µc, ‡2
c ) Ã 1

‡2
c

µt, ‡t ≥ U [µt, log‡t] ∆ p(µt, ‡t) Ã 1 ∆ p(µt, ‡2
t ) Ã 1

‡2
t

Sampling Distributions (Likelihoods):

yc|µc, ‡2
c ≥ N(µc, ‡2

c )]

yt|µt, ‡2
t ≥ N(µt, ‡2

t )

Joint Posteriors:

p(µc, ‡2
c |yc) Ã 1

‡n+2
c

· e
≠ 1

2‡2
c

qn

i=1
(yci≠µc)2

= 1
‡n+2

c
· e

≠ 1
2‡2

c
[(n≠1)s2

c+n(ȳc≠µc)2]

p(µt, ‡2
t |yt) Ã 1

‡n+2
t

· e
≠ 1

2‡2
t

qn

i=1
(yti≠µt)2

= 1
‡n+2

t

· e
≠ 1

2‡2
t

[(n≠1)s2
t +n(ȳt≠µt)2]

Marginal Posteriors:

p(µc|yc) =
⁄ Œ

0
p(µc, ‡2

c |yc)d‡2
c Ã

5
1 + n(µc ≠ ȳc)2

(n ≠ 1)s2
c

6≠n/2
∆ µc|yc ≥ tn≠1(ȳc, s2

c/n)

p(µt|yt) =
⁄ Œ

0
p(µt, ‡2

t |yt)d‡2
t Ã

5
1 + n(µt ≠ ȳt)2

(n ≠ 1)s2
t

6≠n/2
∆ µt|yt ≥ tn≠1(ȳt, s2

t /n)

Control: n = 32, ȳc = 1.013, s2
c = 0.242 ∆ µc|yc ≥ t31(1.013, 0.242/32) ∆ µc ≠ 1.013

0.24/
Ô

32

-----yc ≥ t31

Treatment: n = 36, ȳt = 1.173, s2
t = 0.22 ∆ µt|yt ≥ t35(1.173, 0.22/36) ∆ µt ≠ 1.173

0.2/
Ô

36

-----yt ≥ t35

3



b) Let ◊ = µt ≠ µc. Simulating 1,000 values from each marginal distribution for the mean (defined above),
we obtain the following frequency distribution for ◊:

################################# QUESTION 2 ######################################
set.seed(47)

# Control Group Mean

t_c <- 1.013+(0.24/sqrt(32)) #t-statistic (ncp)

mu_c <- rt(1000, 31, t_c) #same as t_c*rt(1000, 31)

# Treatment Group Mean

t_t <- 1.173+(0.2/sqrt(36)) #t-statistic (ncp)

mu_t <- rt(1000, 35, t_t) #same as t_t*rt(1000, 35)

# Theta: Mean Difference (Parameter of Interest)

theta <- mu_t-mu_c

# Distribution of Theta

hist(theta, breaks=30,

main="Distribution of Theta",

xlab="Theta: Mean Difference")

Distribution of Theta

Theta: Mean Difference
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#95% CI

CI_95 <- t.test(theta, conf.level=0.95)

c(CI_95$conf.int[1], CI_95$conf.int[2])

## [1] 0.05668616 0.24787034

A 95% credible (posterior) interval for ◊ = µt ≠ µc is given by [0.057, 0.248].
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Problem 3: (Ch.3.5)
Rounded data: It is a common problem for measurements to be observed in rounded form (for a review, see
Heitjan, 1989). For a simple example, suppose we weigh an object five times and measure weights, rounded
to the nearest pound, of 10, 10, 12, 11, 9. Assume the unrounded measurements are normally distributed
with a noninformative prior distribution on the mean µ and variance ‡2.

a) Give the posterior distribution for (µ, ‡2) obtained by pretending that the observations are exact
unrounded measurements.

b) Give the correct posterior distribution for (µ, ‡2) treating the measurements as rounded.

c) How do the incorrect and correct posterior distributions di�er? Compare means, variances, and contour
plots.

d) Let z = (z1, ..., z5) be the original, unrounded measurements corresponding to the five observations
above. Draw simulations from the posterior distribution of z. Compute the posterior mean of (z1 ≠ z2)2.

Solution
a) Uninformative Uniform Prior:

µ, ‡ ≥ U[µ, log‡] ∆ p(µ, ‡) Ã 1 ∆ p(µ, ‡2) Ã 1
‡2

Sampling Distribution (Likelihood):

y|µ, ‡2 ≥ N(µ, ‡2)]

Joint Posterior:

p(µ, ‡2|y) Ã 1
‡n+2

c
· e≠ 1

2‡2
qn

i=1
(yi≠µ)2

= 1
‡n+2 · e≠ 1

2‡2 [(n≠1)s2
c+n(ȳ≠µ)2]

p(µ, ‡2|y) = p(µ|‡2, y) · p(‡2|y) = N(ȳ, ‡2/n) · Inv-‰2(n ≠ 1, s2)

Marginal Posteriors:

p(µ|y) =
⁄ Œ

0
p(µ, ‡2|y)d‡2 Ã

5
1 + n(µ ≠ ȳ)2

(n ≠ 1)s2

6≠n/2
∆ µ|y ≥ tn≠1(ȳ, s2/n)

p(‡2|y) =
⁄ Œ

0
p(µ, ‡2|y)dµ Ã (‡2)≠(n+1)/2e≠ (n≠1)s2

2‡2 ∆ ‡2|y ≥ Inv-‰2(n ≠ 1, s2)

############################### QUESTION 3: A ####################################

obs <- c(10, 10, 12, 11, 9) # Data

n <- length(obs) # n

y_bar <- mean(obs) # Sample Mean

s2 <- var(obs) # Sample Variance

c(n, y_bar, s2)

## [1] 5.0 10.4 1.3

Given n = 5, ȳ = 10.4, s2 = 1.3:
µ|y ≥ t4(10.4, 1.3/5)

‡2|y ≥ Inv-‰2(4, 1.3)
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b) Assuming the same uninformative prior and sampling distributions (from part (a) above), the posterior
distribution for (µ, ‡2) is given by:

p(µ, ‡2|y) Ã 1
‡n+2 · e≠ 1

2‡2
qn

i=1
(yi≠µ)2

= 1
‡n+2 · e≠ 1

2‡2 [(n≠1)s2+n(ȳ≠µ)2]

However, since yi are rounded measurements, the true (unrounded) value of yi lies between
yi≠1 + 0.5 and yi + 0.5. That is, yi ± 0.5 . Thus, the correct posterior distribution for (µ, ‡2)
treating the measurements as rounded is given by:

p(µ, ‡2|y) Ã 1
‡2

nŸ

i=1

3
�

3
yi + 0.5 ≠ µ

‡

4
≠ �

3
yi ≠ 0.5 ≠ µ

‡

44

c) Comparing the contour plots for both calculated posteriors, we notice that they are almost identical.
Similarly, both posterior means come very close (especially, with regards to their means). However,
we see that the variance for the posterior for which yi are treated as unrounded (part (a)) is much
larger than that for which we account for the fact that yi are rounded measurements (part (b)), both in
terms of their means and standard deviations. This is likely due to the fact that there is generally more
uncertainty regarding the population in part (a).

############################### QUESTION 3: C ####################################
# Comparing Contour Plots

set.seed(47)

library(LearnBayes)

library(LaplacesDemon)

# Joint Posterior A (treating measurements as unrounded)

jpost_a <- function(mu, sig2, obs){

total <- 0

for (i in 1:length(obs)){

total <- total + log(dnorm(obs[i], mu, sig2))

}

return(total)

}

# Joint Posterior B (treating measurements as rounded)

jpost_b <- function(mu, sig2, obs){

total <- 0

for (i in 1:length(obs)){

total <- total +

log(pnorm(obs[i] + 0.5, mu, sig2) - pnorm(obs[i] - 0.5, mu, sig2))

}

return(total)

}

mu_list <- seq(0, 20, length=100)

sig2_grid <- seq(-5, 5, length=100)

# Contour Plot A

log_dens_a <- outer(X=mu_list, Y=exp(sig2_grid), FUN=jpost_a, obs)

dens_a <- exp(log_dens_a-max(log_dens_a))

contour(mu_list, sig2_grid, dens_a, levels=c(0.05, 0.95, seq(0, 1, 0.1)),

main="Contour Plot A", xlab="mu", ylab="sigmaˆ2",

xlim=c(8, 13), ylim=c(-2, 2))
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# Contour Plot B

log_dens_b <- outer(X=mu_list, Y=exp(sig2_grid), FUN=jpost_b, obs)

dens_b <- exp(log_dens_b-max(log_dens_b))

contour(mu_list, sig2_grid, dens_b, levels=c(0.05, 0.95, seq(0, 1, 0.1)),

main="Contour Plot A", xlab="mu", ylab="sigmaˆ2",

xlim=c(8,13), ylim=c(-2,2))

Contour Plot A
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############################### QUESTION 3: C ####################################
# Comparing Means and Variances

set.seed(47)

# Marginal Posterior Variance A

sig2_a <- (n-1) * s2/rinvchisq(1000, n-1, scale=s2)

c("posterior variance A:", mean(sig2_a), sd(sig2_a))

# Conditional Posterior Mean A

mu_a <- rnorm(1000, y_bar, sqrt(sig2_a)/sqrt(n))

c("posterior mean A:", mean(mu_a), sd(mu_a))

# Sampling Posterior Mean B

mu_dist <- apply(dens_b, 1, sum)

mu_dist_sample <- sample(x=1:100, size=1000, replace=T, prob=mu_dist)

mu_dist_sample_list <- mu_list[mu_dist_sample]

c("posterior mean B:", mean(mu_dist_sample_list), sd(mu_dist_sample_list))

# Sampling Posterior Variance B

sig2_sample <- numeric(length=1000)

for (i in 1:1000){

sig2_sample[i] <- exp(sample(sig2_grid, 1, prob=dens_b[mu_dist_sample[i],]))

}

c("posterior variance B:", mean(sig2_sample), sd(sig2_sample))

## [1] "posterior mean A:" "10.4361121571659" "0.89319022924946"

## [1] "posterior mean B:" "10.4018181818182" "0.672911491565593"

## [1] "posterior variance A:" "3.88230272116312" "2.82831087866404"

## [1] "posterior variance B:" "1.36898234951694" "0.74795079312028"
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d) Having drawn simulations from the posterior distribution of zi, where i = 1, 2, ..., 5, the posterior mean
of (z1 ≠ z2)2 is ¥ 0.156.

############################### QUESTION 3: D ####################################

set.seed(47)

# Simulation for Posterior Distribution of z

z_i <- matrix(0, 1000, 5)

for (i in 1:5){

z_1 <- pnorm(obs[i]-.5, mu_dist_sample_list, sig2_sample)

z_2 <- pnorm(obs[i]+.5, mu_dist_sample_list, sig2_sample)

z_i[,i] <- qnorm(z_1 + runif(1000)*(z_2-z_1), mu_dist_sample_list, sig2_sample)}

mean((z_i[,1]-z_i[,2])ˆ2)

## [1] 0.1555351

Problem 4: (Ch.3.8)
Analysis of proportions: A survey was done of bicycle and other vehicular tra�c in the neighborhood of
the campus of the University of California, Berkeley, in the spring of 1993. Sixty city blocks were selected
at random; each block was observed for one hour, and the numbers of bicycles and other vehicles traveling
along that block were recorded. The sampling was stratified into six types of city blocks: busy, fairly busy,
and residential streets, with and without bike routes, with ten blocks measured in each stratum. Table 3.3
displays the number of bicycles and other vehicles recorded in the study. For this problem, restrict your
attention to the data on residential streets.

a) Let y1, ..., y10 and z1, ..., z8 be the observed proportion of tra�c that was on bicycles in the residential
streets with bike lanes and with no bike lanes, respectively (so y1 = 16/(16 + 58) and z1 = 12/(12 + 113),
for example). Set up a model so that the yi’s are independent and identically distributed given
parameters ◊y and the zi’s are independent and identically distributed given parameters ◊z.

b) Set up a prior distribution that is independent in ◊y and ◊z.

c) Determine the posterior distribution for the parameters in your model and draw 1,000 simulations from
the posterior distribution. (Hint:◊y and ◊z are independent in the posterior distribution, so they can be
simulated independently.)

d) Let µy = E(yi|◊y) be the mean of the distribution of the yi’s; µy will be a function of ◊y. Similarly,
define µz. Using your posterior simulations from (c), plot a histogram of the posterior simulations of
µy ≠ µz , the expected di�erence in proportions in bicycle tra�c on residential streets with and without
bike lanes.

Table 3.3:

Type of Street Bike Route? Counts of bicycles/other vehicles
Residential yes 16/58, 9/90, 10/48, 13/57, 19/103, 20/57, 18/86, 17/112,

35/273, 55/64
Residential no 12/113, 1/18, 2/14, 4/44, 9/208, 7/67, 9/29, 8/154
Fairly busy yes 8/29, 35/415, 31/425, 19/42, 38/180, 47/675, 44/620,

44/437, 29/47, 18/462
Fairly busy no 10/557, 43/1258, 5/499, 14/601, 58/1163, 15/700, 0/90,

47/1093, 51/1459, 32/1086
Busy yes 60/1545, 51/1499, 58/1598, 59/503, 53/407, 68/1494,

68/1558, 60/1706, 71/476, 63/752
Busy no 8/1248, 9/1246, 6/1596, 9/1765, 19/1290, 61/2498,

31/2346, 75/3101, 14/1918, 25/2318
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Solution

################################# QUESTION 4 ######################################

# Computing y_i and z_i

# raw ordered counts of observed bicycle and other vehicle traffic

bikes <- c(16, 9, 10, 13, 19, 20, 18, 17, 35, 55, 12, 1, 2, 4, 9, 7, 9, 8)

other <- c(58, 90, 48, 57, 103, 57, 86, 112, 273, 64, 113, 18, 14, 44, 208, 67, 29, 154)

# whether each count comes from a bike route or not (ordered)

bike_route <- c(rep(1, 10), rep(0, 8)) #1=yes, 0=no

# data frame to compute y and z vectors from columns

traffic <- data.frame(bike_route=bike_route,

bikes=bikes,

other=other)

# y and z vectors (as counts)

y_c <- traffic$bikes[traffic$bike_route==1] #bikes in bike route

z_c <- traffic$bikes[traffic$bike_route==0] #bikes in non-bike route

y_other <- traffic$other[traffic$bike_route==1] #other vehicles in bike route

z_other <- traffic$other[traffic$bike_route==0] #other vehicles in non-bike route

# y and z vectors (as proportions)

y_p <- y_c/(y_c+y_other)

z_p <- z_c/(z_c+z_other)

a) Models for y and z:

Sampling Distributions:

yi
iid≥ Bin(ni, ◊y) for i = 1, 2, ..., 10

zi
iid≥ Bin(ni, ◊z) for i = 1, 2, ..., 8

Note*: This model assumes that yi and zi are the number of successes (bikes in bike
lanes and non-bike lanes, respectively) at points i. To model them as proportions, such
that each can take a value between 0 and 1 (with ◊ instead being the corresponding
number of successes), we may consider doing a transformation of variables and use a
Je�rey’s prior, or modeling each with a Beta distribution (or Direchlet if we model
them together) and reparametarize using –

–+— for the mean (for which we could use a
noninformative uniform prior) and – + — as a rough measure of the precision (for which
we could use a Gamma prior).

b) Uninformative Priors:
◊y ≥ Beta(1, 1)

◊z ≥ Beta(1, 1)

Alternatively,
◊y, ◊z ≥ Dir(1)

9



c) Posteriors:

◊y|yi ≥ Beta
3

◊y

----1 +
nÿ

i=1
yi, 1 + n ≠

nÿ

i=1
yi

4

◊z|zi ≥ Beta
3

◊z

----1 +
nÿ

i=1
zi, 1 + n ≠

nÿ

i=1
zi

4

############################### QUESTION 4: C ####################################

set.seed(47)

# Simulating Posterior

n_sample <- 1000

y_post <- rbeta(n_sample, 1+sum(y_c), 1+sum(y_c+y_other)-sum(y_c))

z_post <- rbeta(n_sample, 1+sum(z_c), 1+sum(z_c+z_other)-sum(z_c))

d) Using the posterior simulations from part (c), a histogram of the expected di�erence in bike tra�c
between residential streets with and without bike lanes, µy ≠ µz, is given below.

############################### QUESTION 4: D ####################################

set.seed(47)

# Expected Difference in Bike Traffic (Between Routes)

exp_diff <- y_post - z_post

exp_diff_mean <- mean(exp_diff)

hist(exp_diff,

main="Expected Difference in Bike Traffic (Between Routes)",

xlab="mu_y - mu_z")

abline(v=exp_diff_mean, lty=2, col="red")

Expected Difference in Bike Traffic (Between Routes)
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Problem 5: (Ch.3.12)
Poisson regression model: Expand the model of Exercise 2.13 (a) by assuming that the number of fatal
accidents in year t follows a Poisson distribution with mean – + —t. You will estimate – and —, following the
example of the analysis in Section 3.7.

a) Discuss various choices for a ‘noninformative’ prior for (–, —). Choose one.

b) Discuss what would be a realistic informative prior distribution for (–, —). Sketch its contours and then
put it aside. Do parts (c)–(h) of this problem using your noninformative prior distribution from (a).

c) Write the posterior density for (–, —). What are the su�cient statistics?

d) Check that the posterior density is proper.

e) Calculate crude estimates and uncertainties for (–, —) using linear regression.

f) Plot the contours and take 1,000 draws from the joint posterior density of (–, —).

g) Using your samples of (–, —), plot a histogram of the posterior density for the expected number of fatal
accidents in 1986, – + 1986—.

h) Create simulation draws and obtain a 95% predictive interval for the number of fatal accidents in 1986.

i) How does your hypothetical informative prior distribution in (b) di�er from the posterior distribution in
(f) and (g), obtained from the noninformative prior distribution and the data? If they disagree, discuss.

Solution
Model for t:

yi ≥ Poisson(◊i), where ◊i = – + —ti

a) Possible Noninformative Priors:

1. Noninformative Unifrom: p(–, —) Ã 1

2. Je�rey’s Prior

Since there is more than one parameter, a di�use uniform prior might be a better alternative to
Je�rey’s prior.

b) Given that ◊i = – + —ti, we could use linear regression to estimate values for – and — from the data.
Moreover, since linear regression assumes that intercept and slope coe�cients are normally distributed,
it would make sense to construct a normal informative on these grounds. Specifically, we could model our
prior beliefs about – and — through independent normal distributions, using their computed estimates
and standard errors as their means and standard deviations, respectively.

############################### QUESTION 5: B ####################################

# Regression

# Fatal Accidents Data (t_i, y_i)

fa <- data.frame(t_i=1:10, y_i=c(24, 25, 31, 31, 22, 21, 26, 20, 16, 22))

# Linear Regression Model

lin_reg <- lm(y_i ~ t_i, fa)

# Estimates to Parameterize Prior

summary(lin_reg)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 28.8666667 2.7494168 10.499196 5.893425e-06

## t_i -0.9212121 0.4431086 -2.078976 7.122850e-02
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Informative Priors:
– ≥ N(28.87, 2.75)

— ≥ N(≠0.92, 0.44)

############################### QUESTION 5: B ####################################

# Contour Plot

# Informative Prior

inf_prior <- function(alpha, beta){

return(dnorm(alpha, 28.87, 2.75)*dnorm(beta, -0.92, 0.44)) #

}

# Alpha/Beta Matrix

ab <- matrix(0, 100, 100)

alpha_grid <- seq(20, 40, length=100) #with mean falling approx in between

beta_grid <- seq(-2, 1, length=100) #with mean falling approx in between

# Contour Plot

for (i in 1:100){

for (j in 1:100){

ab[i,j] <- inf_prior(alpha_grid[i], beta_grid[j])

}

}

contour(alpha_grid, beta_grid, ab, xlab="alpha", ylab="beta", xlim=c(20, 40))
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c) Uninformative Prior:
p(–, —) Ã 1

Likelihood:

p(y|–, —) Ã
10Ÿ

i=1
(– + —ti)yie≠(–+—ti)
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Posterior:

p(–, —|y) Ã p(–, —) · p(y|–, —) Ã 1 · e≠(n–+—
q10

i=1
ti)

10Ÿ

i=1
(– + —ti)yi

Su�cient Statistics:
(yi, ti), for i = 1, 2, ..., 10

d) The posterior density, p(–, —|y), is proper if it integrates to a finite quantity. That is,
⁄ ⁄

p(–, —|y)d–d— < Œ

Since p(–, —|y) has an exponential term raised to a growing negative powe, this term will decrease
quicker than the product of polynomials will grow. Thus, the integral must converge to some
positive value, meaning that p(–, —|y) is necessarily proper.

e) Done in part (b)
– ≥ N(28.87, 2.75) ∆ – ¥ 29.87

— ≥ N(≠0.92, 0.44) ∆ — ¥ ≠0.92

f) Posterior:

p(–, —|y) Ã p(–, —) · p(y|–, —) Ã e≠(n–+—
q10

i=1
ti)

10Ÿ

i=1
(– + —ti)yi

############################### QUESTION 5: F ####################################

# Contour Plot

# Posterior

post <- function(alpha, beta){

dens <- 0

for (i in fa$t_i){

dens <- dens - (alpha+beta*i) +

fa$y_i[i]*log((alpha+beta*i)) -

log(factorial(fa$y_i[i])) #log of density

}

return(dens)

}

# Contour Plot

for (i in 1:100){

for (j in 1:100){

ab[i,j] <- post(alpha_grid[i], beta_grid[j])

}

}

ab2 <- exp(ab-max(ab))

contour(alpha_grid, beta_grid, ab2, xlab="alpha", ylab="beta",

xlim = c(20, 40), ylim=c(-3, 1), levels=c(0.05,0.95, seq(0,1,0.1)))
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g) Using samples of (–, —), a histogram of the posterior density for the expected number of fatal accidents
in 1986, – + 1986—, is given below.

############################### QUESTION 5: G ####################################

set.seed(47)

ab_vec <- c(ab2) #vector of values

# Sampling

samples <- sample(length(alpha_grid)*length(beta_grid),

length(alpha_grid),

replace=T, prob=ab_vec)

alpha <- rep(0, length(alpha_grid))

beta <- rep(0, length(beta_grid))

for (i in 1:100){

j <- samples[i]%/%100

k <- samples[i]%%100

j <- j + 1

if (k==0){k=100; j=j-1}

alpha[i]=alpha_grid[k]

beta[i]=beta_grid[j]

}

# Histogram of Expected Fatal Accidents in 1986

hist(alpha+11*beta,

main="Histogram of Expected Fatal Accidents in 1986",

xlab="alpha + (1986 x beta)")
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Histogram of Expected Fatal Accidents in 1986
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h) A 95% predictive interval for the number of fatal accidents in 1986 is ¥ [10, 30].
############################### QUESTION 5: H ####################################

set.seed(47)

hat_y <- rpois(1000, alpha+beta*11)

quantile(hat_y, c(0.025, 0.975))

## 2.5% 97.5%

## 10 30

i) The posterior distributions obtained through the hypothetical informative and noninformative priors
di�er in that the former assumes independence between – and —, yielding very similar and symmetric
results (observed in the plots above), while the latter, in not making this assumption, produces less
“uniform” outcomes that reflect the (perhaps more accurate) dependency between the two parameters.

Problem 6: (Ch.3.14)
Improper prior and proper posterior distributions: Prove that the posterior density (3.15) for the
bioassay example has a finite integral over the range (–, —) œ (≠Œ, Œ) ◊ (≠Œ, Œ).

Solution
Bioassey Posterior:

p(–, —|y) Ã
kŸ

i=1
logit≠1(–+—xi)yi(1≠logit≠1(–+—xi))ni≠yi Ã

kŸ

i=1

3
e–+—xi

1 + e–+—xi

4yi
3

1≠ e–+—xi

1 + e–+—xi

4ni≠yi

To prove that this posterior density has a finite integral over the range (–, —) œ (≠Œ, Œ)◊(≠Œ, Œ),
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